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ON THE TOPOLOGY OF POSITIVELY CURVED
4-MANIFOLDS WITH SYMMETRY

WU-YI HSIANG & BRUCE KLEINER

1. Introduction

A positively curved manifold is, by definition, a complete Riemannian man-
ifold M with everywhere positive sectional curvature. The work of Gromoll
and Meyer [6] gives a thorough understanding of noncompact positively curved
manifolds, so we consider only compact positively curved manifolds, hence-
forth denoted CPCM’s. Synge’s theorem [10] asserts that an even dimen-
sional, orientable CPCM is simply connected. This theorem together with
the topological classification of compact surfaces implies that a 2-dimensional,
orientable CPCM is homeomorphic to S2. Three dimensional CPCM’s have
been determined by Hamilton [7]; they are diffeomorphic to space forms. How-
ever, very little is known about the topology of 4-dimensional CPCM’s. The
known examples are homeomorphic to S4, RP*, and CP?, while the well-
known problem of Hopf remains unsolved:

Does S? x S? admit a positively curved Riemannian metric?

The three known examples of compact 4-manifolds which admit positively
curved metrics all admit homogeneous positively curved metrics, i.e. metrics
with a lot of symmetry. Therefore it is natural to ask the following question:
Which compact 4-manifolds admit positively curved Riemannian metrics with
at least one infinitesimal isometry, in other words, a nontrivial Killing field?
The main result of this paper answers this question.

Theorem 1. Let M be a 4-dimensional orientable CPCM. If M has a
nontrivial Killing vector field, then M is homeomorphic to S* or CP2.

Corollary 1. Let M be a 4-dimensional nonorientable CPCM. If M has
a nontrivial Killing vector field, then M is two-fold covered by S*.

Corollary 2. S? x S% does not admit a positively curved Riemannian
metric with a nontrivial Killing field.

Technically speaking, the existence of a nontrivial Killing vector field on a
compact Riemannian manifold M is equivalent to the existence of a nontrivial
Sl.action on M. Let F(S!, M) be the fixed point set of such an S*-action on
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M. Then it is easy to prove that the Euler characteristic of F(S1, M) is equal
to that of M, i.e. x(F(S!,M)) = x(M), and each connected component of
F(S!, M) is automatically a totally geodesic submanifold. In the special case
where M is a 4-dimensional orientable CPCM, we will prove in Lemma 2 that

x(M) isolated points,

F(S', M) =
( ) { or $? U (x(M) ~ 2 isolated points).

The major task in the proof of Theorem 1 is proving that x(F(S!, M)) can
be at most 3.

Actually, most of the techniques of this paper are equally applicable to the
nonnegatively curved case. We believe that the following results are within
reach:

Conjecture 1. A 4-dimensional CPCM with a nontrival Killing vector
field should be diffeomorphic to S*, RP*, or CP2.

Conjecture 2. A compact, simply connected, nonnegatively curved 4-
manifold with a nontrivial Killing vector field should be diffeomorphic to either
S4, CP?, CP?# £ CP?, or §%? x S2.

Of course, it is possible that these theorems would remain true without the
assumption on infinitesimal symmetry, but then their proofs would require
completely new ideas and techniques.

2. The orbital geometry of S'-Riemannian manifolds

An S!-Riemannian manifold is, by definition, a Riemannian manifold with
a given isometric S!-action. In this section we will establish some properties
of the orbital geometry of a given S'-Riemannian manifold (S!, M), especially
in the case that M is a 4-dimensional orientable CPCM.

Lemma 1. Let (S, M) be a compact S*-Riemannian manifold and let
F be its fized point set. Then:

(i) The Euler characteristic of F is equal to the Euler characteristic of
M.

(ii) Each connected component of F is a totally geodesic submanifold of
even codimension.

-Sketch of proof. (For more details, see [8, Theorems 5.3 and 5.6].) (i) Let
Z, be the unique cyclic subgroup of S! of prime order p and let F(Z,, M) be
the set of fixed points of Z, in M. It follows from the long exact sequence of
the pair (M, F(Z,, M)) and the additivity of the Euler characteristic that

X= X(F(ZP)M)) + X(M’ F(ZP’M))
= x(F(Zy,M)) (mod p).
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It is easy to see that F(Z,, M) = F for all sufficiently large primes. Hence
x(F) = x(M) ( mod p) for all sufficiently large primes p, so x(F) = x(M).

(ii) Let Y be a connected component of F' and let v € T,Y be an arbitrary
tangent vector of Y at y € Y. Then v is fixed under the induced S!-action
on TM. Hence from the existence of a unique geodesic with initial velocity
v it follows that such a geodesic is pointwise fixed under the S!-action, and
hence belongs to Y. This proves that Y is a totally geodesic submanifold
in M. Since all nontrivial irreducible orthogonal representations of S! are
two-dimensional, the codimension of Y is necessarily even. q.e.d.

From now on we will always assume, without further specification, that
(S1,M*,g) is a 4-dimensional, orientable CPCM with a given effective S!-
action and metric tensor g.

Lemma 2. Let (S',M,q) be as above and let F be its fized point set.
Then F is nonempty and

_ { x{(M) isolated points,
" | or 82U (x(M) — 2 isolated points).

Proof. Synge’s theorem [10] asserts that such an even dimensional mani-
fold is always simply connected. Therefore,

Hi(M) =0 and by duality H3z(M) =0,
x(M) =24 dim Hy (M) > 2.

Hence by Lemma 1, x(F) > 2 so F is nonempty. Moreover, Frankel’s theorem
[4] implies that F can have at most one 2-dimensional connected component.
Suppose F' contains a 2-dimensional component Y. The normal bundle of Y
is oriented by the $!-action, so Y is orientable. Being totally geodesic as well,
Y is positively curved and must therefore be homeomorphic to S?. g.e.d.

Next let us consider the geometry of the orbit space M = M/S'. We will
equip M with the orbital distance metric: the distance between two elements
of M is the distance between the corresponding orbits in M. Let My be the
union of all the principal S!-orbits in M and let My = m(Mo) where 7: M —
M is the canonical surjection. We give M the unique smooth structure which
makes m: My — Mg a submersion, and the unique smooth Riemannian metric
g for which 7: (My,g) — (My,7) is 2 Riemannian submersion.

Lemma 3. Suppose F = S? U {isolated points}. Let S = n(S*) C M.
Then the Riemannian structure (7\70,@) extends to a Riemannian structure
on N = MyUS? with totally geodesic boundary S2. The distance function on
N induced by this Riemannian structure coincides with the restriction of the
orbital distance metric on M to NC M.
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Proof. The local geometry of M near a point 7(y) € S? is determined by
the geometry of the local representation at y € S2. This representation is
equivalent to

$: 8" xC* - C% (21, 2) = (21,6 22),
where z), 2, € C, so the local structure of M at 7(y) is of the type
C%/8' ~ C x (C/S') ~R? x Ry = a half space,

i.e., N = M U S? has a boundary structure near 3.

Geodesics in NV = Mo US? are the projections of geodesics in M which are
perpendicular to the S? orbits, so it follows that S is totally geodesic in M.

The distance function induced on N by the Riemannian structure coincides
with the orbital distance metric on the dense subset My, so it coincides with
the orbital distance metric on all of N. q.e.d.

Let y € M be an isolated fixed point. The slice representation at y is
orthogonally equivalent to

Pkt ST x C? — C¥ (21, 22) = (€21, 2y),

where 21,2, € C and k,l € Z with g.d.c(k,l) = 1. Let §3(1) C C? be the
unit sphere and let d: $3(1) x S3(1) — R be given by d(v,w) = L({v,w) =
the angle between v and w. Let (X, dx;) be the orbit space of (¢x ¢, S3(1),d)
with orbital distance metric dg ;.

Lemma 4. If z1,25,23 are arbitrary points in Xy, then

di(1,22) + dici (22, 23) + dii(23,21) < 7.

Proof. The two great circles in $3(1) given by z; = 0 and 22 = 0 are orbits
of ¢x, for all k,I with g.c.d.(k,l) = 1. Let Xx; = K \{these two orbits}.
X’k,l consists of principal orbits, so we give it the Riemannian submersion
metric coming from the canonical Riemannian metric on S3(1). We will be
using the fact that this Riemannian submersion metric induces the distance
function dk,[ on Xk,[.

In the special case where k = | = 1, the projection 7: §3(1) — X ; is the
Hopf fibration and it is easily checked that X; ; is isometric to a CP! with
diameter 7/2, i.e., X;,1 is isometric to $2(1/2) C E3. Hence the inequality
di1(z1,22) +dy 1(z2,23) + d1,1(z3,21) < 7 is obvious.

We now fix (k,l) # (1,1). The isometric T2-action

T2 X S3(1) N 33(1)’ (eiel,e’iefz) . (21,22) — (ei91 21,6i0222)

induces an isometric S!-action on the Riemannian manifold Xg;. X, is a
connected noncomplete surface of revolution with diameter # /2, so it admits
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a coordinate system (r,8): Xi, — (0,7/2) x S! such that the metric in these
coordinates is ds? = dr? + (f(r))% d6? where d# is the standard 1-form on S!.
By replacing r with w/2—r if necessary, we can arrange that the latitude circle
r = ¢ corresponds to the orbit space of the torus T2(c) = T%(cosc,sinc)) C
S3(1). All the ¢ orbits in 7%(c) have the same length and the function f(r)
is determined by

27 f(c)(the length of a ¢x orbit in T%(c)) = 472 coscsine.

The orbits of ¢, all have length > 27, so f( ) < coscsine = 3 sin2ec.
Hence there is a length nomncreaszng bijection of X 1,1 onto X &, which assigns
points in X .1 to points in sz with the same coordinates in (0,7/2) x S!.
The inequality

dii(z1,22) + di(22, 23) + di (23, 21) < 7

for z,,22,23 € X’k,; now follows from the corresponding inequality already
proved for (k,1) = (1,1). Since Xk’g is dense in Xy ;, Lemma 4 follows.

Lemma 5. If dimF = 2, then the local representation of S! at every
tsolated fized point must be equivalent to ¢y 1.

Proof. Let Y be the 2-dimensional component of F. Then from the local
representation of S! on TyM, y € Y, it follows that there exists a tubular
neighborhood of Y, say U, such that the isotropy group is trivial for all
zeU\Y.

Suppose there exists an isolated fixed point p € F such that the local
representation of S! on T, M is equivalent to @k, g.c.d. (k,I) =1 and k> 1.
Then F(Zy, M) contains at least two connected components of dimension 2.
This contradicts the theorem of Frankel [4] which asserts that two such totally
geodesic surfaces in M cannot be disjoint.

3. The proof of Theorem 1

Let M be a 4-dimensional orientable CPCM. Then by Synge’s theorem [10]
M is simply connected. We will exploit the orbital geometry of the given S*-
action to prove that x(M) is at most 3. It then follows directly from the work
of Freedman [5] that M is homeomorphic to either $* or CP2. By Lemmas 1
and 2, x(M) = x(F) and

F(M) = { x (M) isolated pointsj, '
or 8% + (x(M) — 2) isolated points.

Therefore the proof of the theorem reduces to proving that F' consists of at
most three isolated points or 'S? plus at most one more isolated point. We
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will divide the proof into two cases according to dim F' = 0 or 2 and we will
prove each case by contradiction.

Case 1, dimF = 2. Suppose F' = S? plus at least two isolated fixed
points. Let p, ¢ be two isolated fixed points and let  be a minimizing geodesic
segment in M joining p to ¢q. Let # be a minimizing geodesic segment from
S? to S'(y) = the S! orbit of v; hence length(n) = dist(S?, S1(n)), and 7
has endpoints A € S% and B € S!(y). The isotropy group of the S!-action
does not vary along the interior of the minimizing segments ~ and 7, since
otherwise they could be replaced with broken geodesic segments of the same
length. Hence it follows from Lemma 5 that the interiors of v and 7 lie in
My = union of principal orbits in M.

Suppose B = p. By Lemma 5 the local representation of S at p is equiv-
alent to ¢; 1. Hence e* - v is perpendicular to  at p for all ¢ € S'. The
second variation formula can now be applied to the geodesic segment 7 as in
the proof of Frankel’s theorem [4] to show that length(n) > dist(S?, S1(x)).
This contradicts the assumption that length(n) = dist(SZ%, S'(y)). The same
argument rules out B = q.

Now suppose B lies in the interior of .. Then the isotropy group of B is
trivial, forcing n € Mp U S%. Let ¥ = w(v\{p;q}) C My, and 7 = w(n) C
MyUS? = N. By Lemma 3, N is a smooth Riemannian manifold with totally
geodesic boundary, and since Riemannian submersions are always curvature
nondecreasing (see [4]), N has sectional curvature everywhere > é for some
6 > 0. An application of the second variation formula to the geodesic segment
7 C N shows once again that length(n) > dist(S?%, S!(y)), contradicting
length(n) = dist(S?,S!(v)). Hence F can contain at most one isolated fixed
point in addition to the S2.

Case 2, dim F = 0. Suppose F contains at least four isolated points, p;,
1 <4 < 4. Let lj; = dist(ps,p;) and let Ci; = {7: [0,;;] — M|y is a
minimizing geodesic segment from p; to p;}, 1 < 4,5 < 4. For each triple
1<14,7,k <4 set

ik = min{ Z(~7}(0), 7 (0)) vy € Cijs vk € Cik}-

Note that the minimum exists because M is compact.
Lemma 6. For each triple of distinct integers 1 < 1,7,k < 4,

Ak + Qgij + Ogs > T

Proof. Let us assume, for notational simplicity, that (¢,7,k) = (1,2,3).
Set 1/R? = § = minimum of sectional curvature of M. Choose z;,z2,z3
on S%(R) such that the spherical triangle A(x1,z2,%3) has l12, /23,031 as its
three lengths. Applying Toponogov’s theorem [11] to an arbitrary triangle
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with 12 € C12, Y23 € Ca3, 713 € C13 as its three sides, one gets
£(712(0),713(0)) > L(Z173, T1T3),

and hence, by the definition of aj23, that aizs > Z(Z7Z3,T1Z3). Therefore

(123 + @312 + @231 > the sum of interior angles of A(z1,z2,23) > 7. q.ed.
From the above lemma it follows easily that

E E Qi > 4r.
1<i<4 1<5<k<4
Jk#i

But, on the other hand, from Lemma 4 it is easily seen that

Z aijr <7 foreach 1 <17 <4,
1< <k<4 ’
J:k#1
which gives a contradiction. Therefore ' can have at most three isolated
points when dim F' = 0. This completes the proof of the theorem.
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